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ABSTRACT: A new probabilistic tornado detection algorithm was developed to potentially replace 

the operational tornado detection algorithm (TDA) for the WSR-88D radar network. The Tornado 

Probability algorithm (TORP) uses a random forest machine learning technique to estimate a 

probability of tornado occurrence based on single-radar data, and is trained on 166,145 data 

points derived from 0.5°-tilt radar data and storm reports from 2011-2016, of which 10.4% are 

tornadic. A variety of performance evaluation metrics show a generally good model performance 

for discriminating between tornadic and non-tornadic points. When using a 50% probability 

threshold to decide whether the model is predicting a tornado or not, the probability of detection 

and false alarm ratio are 57% and 50%, respectively, showing high skill by several metrics and 

vastly outperforming the TDA. The model weaknesses include false alarms associated with poor-

quality radial velocity data and greatly reduced performance when used in the western United 

States. Overall, TORP can provide real-time guidance for tornado warning decisions, which can 

increase forecaster confdence and encourage swift decision making. It has the ability to condense 

a multitude of radar data into a concise object-based information read-out that can be displayed in 

visualization software used by the National Weather Service, core partners, and researchers. 
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SIGNIFICANCE STATEMENT: This study describes the Tornado Probability algorithm (TORP) 

and its performance. Operational forecasters can use TORP as real-time guidance when issuing 

tornado warnings, causing increased confdence in warning decisions, which in turn can extend 

tornado warning lead times. 

1. Introduction 

Data from weather radars have been used to observe and forecast severe storms in the United 

States for many decades (Whiton et al. 1998a,b). Since the frst radar observation of a tornadic 

storm and the subsequent installation of the Weather Surveillance Radar network (WSR-57) in 

the 1950s (Stout and Huf 1953), the U.S. radar network has undergone several expansions and 

upgrades. As the radar network evolved, so has our understanding of the radar representation 

of severe storms and how this knowledge can be used to support the decision to issue tornado 

warnings (Smith and Holmes 1961; Donaldson 1970; Lemon et al. 1977). Some early discoveries 

that were – and continue to be - signifcant for issuing tornado warnings include the refectivity (ZH) 

hook echo signature and the weak echo region, as well as the radial velocity (VR) tornadic vortex 

signature (TVS; Chisholm 1973; Fujita 1973; Burgess et al. 1975; Brown et al. 1978; Markowski 

2002; Brown and Wood 2012). 

The establishment of the Next Generation Weather Radar (NEXRAD) network of Weather 

Surveillance Radar-1988 Doppler (WSR-88D; Crum and Alberty 1993) radars in the 1990s 

led to a large increase in tornado-warning skill as a result of the new information provided to 

National Weather Service (NWS) forecasters, most evident by a considerable improvement in the 

probability of detection of tornadoes (Simmons and Sutter 2005). Since the initial deployment, 

several signifcant upgrades to the WSR-88D network have occurred, including the implementation 

of super-resolution data (Brown et al. 2002, 2005; Torres and Curtis 2007) and the dual-polarization 

upgrade (Istok et al. 2009; Saxion and Ice 2012). 

These advances in both radar and data-processing technology have aided in research that fur-

thers the understanding of Doppler radar signatures associated with storm-scale processes that 

involve tornadoes. Ryzhkov et al. (2005) introduced the tornadic debris signature (TDS), which 

is characterized by an area of depressed correlation coefcient (�HV) and diferential refectivity 

(ZDR) associated with a TVS. The TDS signature is a robust tornado detection tool that is used 
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in NWS tornado-warning operations (Van Den Broeke 2017; Warning Decision Training Division 

2022a). The vertical extent of the TDS is also used to infer potential tornado intensity, which is 

incorporated into decisions concerning impact-based tornado warning tags (Bodine et al. 2013; 

Gibbs 2016; Warning Decision Training Division 2022b). 

More recent work has shown how radar signatures change with the evolution of tornadic storms, 

including both the pre-tornadic and post-tornadic periods, as well as how they difer from non-

tornadic storms. Sandmæl et al. (2019) evaluated storm-based extrema of a multitude of variables, 

including azimuthal and range derivatives of VR, and showed statistical diferences between tor-

nadic and non-tornadic storms, as well as between the pre-tornadic, currently tornadic, and post-

tornadic periods. Similar results were found by Lyza et al. (2022), who examined the azimuthal 

shear evolution of tornadic supercells during a historical tornado outbreak. The vertical alignment 

of the azimuthal shear has also been found to separate tornadic and non-tornadic storms through 

analysis of a large sample of supercells, as well as separating the tornadic and post-tornadic periods 

of tornado-producing supercells (French and Kingfeld 2019; Homeyer et al. 2020). Moreover, 

Homeyer et al. (2020) showed that the storm-motion relative orientation of mid-to-low-level ZDR 

and the relative orientation of regions of low-level enhanced ZDR and specifc diferential phase 

(KDP) could indicate whether a supercell has tornadic potential, the latter of which was also 

observed by Loefer et al. (2020). The size of the ZDR column can also separate pre-tornadic 

supercells from non-tornadic supercells (Van Den Broeke 2020). Polarimetric radar variables have 

also been linked with tornado demise. Segall et al. (2022) found that decreases in maxima in ZDR 

arcs (Kumjian and Ryzhkov 2008) and the separation between the orientation angles in ZDR and 

KDP were associated with tornado dissipation. 

With the discovery of radar signatures associated with tornadoes, there have been eforts to 

create automated algorithms to identify them to aid operational forecasters. The TVS algorithm 

was the frst tornado detection single-radar algorithm to be a part of the WSR-88D operational 

system products, which used VR to identify areas of tight rotation (NEXRAD Joint System Program 

Ofce 1985; Crum and Alberty 1993). To utilize the improved capabilities of the WSR-88D radars 

since the TVS algorithm was developed, the National Oceanic and Atmospheric Administration 

(NOAA) National Severe Storms Laboratory (NSSL) introduced the Tornado Detection Algorithm 

(TDA; Mitchell et al. 1998) in the late 1990s, which provided a marked improvement over the TVS 
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algorithm and has been a part of the operational NEXRAD Level III products since. Radar dual-

polarization moments were not available and therefore not implemented during the development 

of the original TDA algorithm, but are frequently used in NWS tornado warning operations today 

in their base form (Bentley et al. 2021) or through ancillary products that they are ingested into 

(Smith et al. 2016; Cintineo et al. 2020). Warning forecasters now face an increasing amount of 

weather information, and investigating all of the products and tools available can be time consuming 

and overwhelming (Karstens et al. 2015; Boustead and Mayes 2014). Advancement in automated 

techniques such as machine learning can be used to condense available model and observational data 

concerning high-impact weather by highlighting features that might be of interest to the warning 

forecaster (McGovern et al. 2017; Lagerquist et al. 2017). As machine learning is increasingly 

applied to the severe storms nowcasting problem (Lagerquist et al. 2020; Mecikalski et al. 2021; 

Gensini et al. 2021), there have been successful transitions of machine learning products from 

research to operations (e.g., Cintineo et al. 2020). 

This paper describes a new probabilistic Tornado Probability algorithm (TORP) developed for 

the WSR-88D network to potentially replace the TDA as a NEXRAD Level III product, which 

utilizes a random forest (RF; Ho 1998; Breiman 2001) machine learning technique and several 

base, dual-polarization, and derived Doppler radar products to provide fast, real-time probabilistic 

detection of tornadoes. TORP uses an object-based framework, employing VR-derived linear least-

square derivative (LLSD; Mahalik et al. 2019) azimuthal shear (AzShear) felds to determine areas 

with higher magnitudes of rotation to generate storm objects. TORP refnes the abundance of radar 

information available in real time into an easy-to-interpret product that provides both a situational-

awareness tool for forecasters to use in tornado-warning operations, and a device to accelerate 

decision making by enhancing forecaster confdence during the tornado warning issuance process. 

This publication gives an overview of the TORP algorithm, which includes the construction of 

the RF and details on how the algorithm operates. A thorough performance evaluation of TORP 

and how it compares to the performance of the operational TDA is also presented. Additionally, a 

discussion of how TORP can be used in operations and its potential benefts to the tornado warning 

operations process is provided. 
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2. Tornado Radar Algorithms 

To put TORP’s functionality in context, this section will provide an overview of the TDA (Mitchell 

et al. 1998), the TDS algorithm (Snyder and Ryzhkov 2015), and ProbSevere’s ProbTor (Cintineo 

et al. 2020). 

a. TDA 

The TDA is an operational NEXRAD Level III product that is calculated and output through the 

Radar Product Generator (RPG) maintained by the NOAA NWS Radar Operations Center (NWS 

Radar Operations Center Applications Branch 2021). The TDA is a single-radar algorithm that 

provides the location of a TVS or an elevated TVS within a default range of 100 km from a radar 

(Mitchell et al. 1998). Tornado objects are defned using multiple thresholds of VR diference 

between adjacent radar gates at a constant range thresholded by ZH. The object creation method 

frst defnes single-tilt 2D detections by identifying areas of shear characterized by large values of 

VR diference, which are later combined into 3D detections with data from diferent tilts below a 

specifed altitude. TDA detections are tracked in time through other algorithms run at the RPG 

(the Mesocyclone Detection Algorithm (MDA; Stumpf et al. 1998) or Storm Cell Identifcation 

and Tracking Algorithm (SCIT; Johnson et al. 1998) depending on what data are available). 

b. TDS 

TDS detection was developed as a proposed classifcation in the Hydrometeor Classifcation 

Algorithm (HCA; Park et al. 2009; Snyder and Ryzhkov 2015). The TDS classifcation is decided 

by applying thresholds and weighting by fuzzy logic to fve radar-derived variables: AzShear, 

�HV, ZDR, ZH, and a diferential phase shift (ΦDP) texture parameter. The HCA is an areal 

product that assigns the TDS classifcation to individual radar gates. These gates can be isolated to 

create TDS tracks, which are accumulated in a similar way to the operational Multi-Radar Multi-

Sensor (MRMS; Smith et al. 2016) rotation tracks. While the TDS classifcation category is not 

operational, the principles and TDS signatures presented in Snyder and Ryzhkov (2015) are used 

by operational meteorologists as one of the tools to identify tornadoes. The Radar and Applications 

course ofered to NWS forecasters by the Warning Decision Training Division has four guidelines 

in their TDS detection method, which mimics the HCA TDS classifcation thresholding technique 
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(Warning Decision Training Division 2022a); 1) identify a VR couplet, 2) check for a nearby area 

of low �HV values, which 3) overlaps with ZH values above 35 dBZ with 4) ZDR values near 0. 

c. ProbTor 

ProbTor is a part of the ProbSevere algorithm, which provides storm-based probabilities for 

severe wind, hail, and tornado hazards (Cintineo et al. 2014, 2020). With a 2-min temporal 

resolution, ProbTor provides probabilities of a tornado occurring within the next 60 min. The 

probabilities are calculated using machine learning, specifcally a naı̈ve Bayesian classifer (in 

version 2), with information from MRMS AzShear, Earth Networks Total Lightning Network 

(ENTLN) fash density, and environmental variables from Rapid Refresh (RAP; Benjamin et al. 

2016) model data. ProbTor objects are tied to ProbSevere objects that are created using a watershed 

technique with MRMS composite ZH, which do not require rotation and can range in size from a 

relatively small cell to a large-scale linear system. 

3. TORP Overview 

a. TORP Data and Methods 

1) Algorithm Inputs 

TORP has a range of required and optional inputs, as well as adjustable parameters, which are 

outlined in Table 1. 

(i) Single-Radar Products TORP operates by calculating tornado probabilities from Level II 

single-radar data, which can be obtained from the NOAA Big Data Program Amazon Web Services 

(AWS; Ansari et al. 2018) NEXRAD storage (NOAA National Weather Service Radar Operations 

Center 1991). All base radar felds, which include ZH, VR, velocity spectrum width (SW), as well 

as the dual-polarization products ΦDP, �HV, and ZDR, are processed using a 3×3 median flter 

before the algorithm extracts the object-based values of these felds. The VR data are dealiased 

using the dealiasing methods from WSR-88D RPG Build 19 (Jing and Wiener 1993; Zittel 2019; 

Losey-Bailor et al. 2019). 

(ii) Single-Radar LLSD Products LLSD azimuthal, range, and total gradients (AzGradients, 

RanGrandients, and Gradients) were calculated for all single-radar moments following the methods 
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Table 1. List of required and optional inputs for TORP, including inputs in the text fle formats comma-

separated values (CSV), and extensible markup language (XML), as well as adjustable numerical and string 

inputs. 

Input Description 

Random forest CSV fle This fle will be provided by the developer and will not change unless the RF is retrained 

4-letter ICAO radar code 
Required 

Single-radar 0.5°-tilt data 

Text string specifying which radar to use 

Dealiased VR, ΦDP, ZH, �HV, velocity spectrum width, ZDR 

Base product, and LLSD azimuthal, range, and total gradients, indexed by an XML fle 

RAP-derived sounding table XML fle with 0-6-km wind information 

Imputation data CSV fle with imputation values in case of missing data 

Tilt Default: 0.5° 

Specifying which tilt the algorithm will run on 

Minimum number of object gates Default: 4 

Requiring objects to have at least this many gates meeting the AzShear threshold 

Range limit threshold Default: 160 km 

The radar range threshold used to remove or fag far-range objects 

Range limit Default: On 

Removing objects outside of the range threshold 

Elevation threshold Default: None 

A height threshold in km, which will remove objects above the specifed threshold 
Optional 

ZH flters Default: 20-dBZ thresholding, double despeckling, median fltering, and dilation fltering 

Object data will be thresholded by ZH data with this flter 

Maximum merging radius Default: 9,000 m 

Objects with centers within this distance of one another will be merged 

Radius for variable extraction Default: 2,500 m 

The current RF is trained on variables extracted in the default radius 

Probability threshold Default: 0 

Excluding objects below this probability 

Maximum tracking distance Default: 9,000 m 

Objects will only be linked in time if they are within this distance of the forecasted position 

Maximum storm speed Default: 15.5 m s−1 

The maximum assumed speed used when tracking objects by using the track history 

Anti-cyclonic detections Default: Of 

Anti-cyclonic objects can be evaluated if given an RF that is trained with anti-cyclonic objects 

Latitude, longitude, and time Creating an object from manual time and location input to be evaluated by the RF 

Manual location distance Default: 2,500 m 

Adjusts manual location to the nearest AzShear maximum within this distance 

described in Mahalik et al. (2019). In addition to being used to calculate tornado probabilities with 

the other radar variables, LLSD AzShear is used to defne high-rotation storm objects. Similar 
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to how AzShear represents the azimuthal shear, the range gradient in VR represents divergent 

shear (DivShear). Recent studies have shown the utility of DivShear signatures associated with 

tornadic storms, with case studies showing signatures during pre-tornadic periods for lower-rated 

quasi-linear convective system or tropical cyclone tornadoes (Mahalik et al. 2019; Sandmæl et al. 

2019; Sandmæl and Reinhart 2022). These signatures include quadrupoles of extreme high and 

low values (Fig. 1F) and highly negative (convergent) low-level DivShear. Several LLSD gradient 

products show distinct signatures associated with TDSs, some of which occur without a TDS 

present as well, which is utilized when TORP is calculating its tornado probabilities. As an 

example, a selection of LLSD products are presented in Fig. 1 as a supercell is producing a tornado 

that caused EF5-rated damage (circled location). While not all of the LLSD gradients for each 

product are shown, signatures of note are dipoles of extreme low and high values of ΦDP, �HV, 

and SW AzGradients and RanGrandients, rings in ZH and �HV Gradients, and circles of enhanced 

ΦDP and SW Gradients (not shown). These LLSD signatures coincide with known TVS and TDS 

signatures in Fig. 1A-D, which are the debris ball, VR couplet, and areas of low �HV and enhanced 

SW, respectively (e.g., Burgess et al. 1975; Ryzhkov et al. 2005; Bodine et al. 2013; Sandmæl et al. 

2019). While most of the LLSD gradients are unique products, the ΦDP RanGradient is calculated 

similarly to the operational KDP. However, the ΦDP RanGradient requires fewer processing steps 

and retains values higher than 12° km−1, revealing the dipole of extreme values in the TDS location 

in Fig. 1J. 

(iii) RAP Data Model analysis data from RAP (Benjamin et al. 2016) can be used to calculate 

0-6-km mean storm motion to use as a frst guess when using storm motion to track TORP objects 

in time. Hourly RAP data can be retrieved from NOAA National Centers for Environmental 

Information (NCEI). 

2) Object Creation and Tracking 

After initiation, TORP will create storm objects based on a 0.006-�−1 AzShear threshold. This 

threshold for creating automated objects is adjustable, though this default number is based on a 

statistical analysis of all non-quality-controlled storm reports from 2011-2018 from NCEI (NOAA 

National Weather Service 1950). The analysis showed that 92% of storm samples with an ongoing 

tornado and 68% of storm samples with any ongoing severe weather exceed this AzShear threshold. 
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Fig. 1. Example of 0.5°-tilt single-radar products associated with the 20 May 2013 Moore, OK tornadic 

supercell at 2012 UTC with the EF5 tornado location circled. A) Raw ZH, B) Dealiased VR, C) Median-fltered 

�HV, D) Median-fltered SW, E) AzShear, F) DivShear, G) �HV Gradient, H) SW AzGradient, I) ZH Gradient, J) 

ΦDP RanGrandient, K) ZDR Gradient, L) SW RanGrandient. 

Initial objects are found by grouping the radar gates that indicated high rotation from AzShear by 

using a depth-frst search recursive algorithm, which searches for neighboring pixels (Tarjan 1972). 

Any objects consisting of fewer than 4 gates are discarded to reduce the number of objects associated 

with noise in the VR data. The objects are also limited by the object distance from the radar, which 

is 160 km by default. Outside of this range, the TORP RF model had limited samples to train on 

primarily because data from the nearest radar was always used when extracting the training data, 

which rarely exceeded 160 km (Fig. 2). The total number of data points exceeding 160 km in 

range is an order of magnitude lower than the count in each 20-km bin within 160 km of a radar. 

However, the range threshold is adjustable and can be turned of, which will trigger the algorithm 

to fag objects outside of the threshold rather than removing them. 

The initial objects are masked with fltered ZH data to further reduce noise. In addition to the 

3×3 median flter that is applied to all base variables, the ZH feld that is used to mask the objects 

is fltered further by applying a 20-dBZ threshold, double despeckling, and a dilation flter. This 

combination of image-processing techniques and thresholding allows the removal of a large amount 

of VR noise, especially near-radar ground clutter, while retaining objects in weak-echo regions by 

dilation of the higher ZH values. 
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Fig. 2. Radar range counts for the 2011-2016 training dataset in bins of 20 km. The color shift signifes which 

bins are inside or outside of the default range limit. 

Multiple detections of one threat are minimized by combining objects that are within either 9 km 

or two times the azimuthal spacing of the radar data, whichever is smaller. If two objects fall within 

this distance of one another, the two objects are merged by assigning the ID of the object with 

the strongest AzShear maximum to both objects. The 9-km threshold distance was chosen as an 

optimal distance to create storm-based objects after subjectively testing varying thresholds between 

5 and 15 km, but it is an adjustable input that can be provided when initializing the algorithm. This 

could be a relevant adjustment to obtain individual tornado probabilities for investigating cycling 

supercell storms with multiple areas of rotation that are producing concurrent tornadoes. 

The object merging concludes the object creation process. Radar data are extracted within a 

2.5-km radius of each object center, which is defned as the location of the maximum AzShear 

within the object. The extraction radius was determined by estimating the areal extent of the 

single-radar signatures associated with large tornadoes to use as an upper limit. For reference, the 

circle encompassing the TVS in Fig. 1 is approximately 5 km in diameter. This circle captures all 

of the extreme values associated with the TVS/TDS in the example, with the exception of the ZDR 

arc displayed in the ZDR Gradient. The minimum, 25th percentile, median, 75th percentile, and 

maximum values of each radar product are calculated from the extracted values to be evaluated 

by TORP’s RF model that provides the tornado probability. The objects can be fltered by the 

probability provided when the algorithm is started. However, the default is to keep all of the objects 

and let the user flter them by using a probability slider in a visualization tool. 
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Objects go through a tracking process to link objects in time to develop trends and show continuity. 

The tracking is performed so that objects with the highest rotation are evaluated frst, which will lead 

to retaining information from the strongest circulation if storms are merging. To create forecasted 

positions for linking objects in time, the algorithm will use the mean storm motion calculated from 

the last four object locations along an object track or the 0-6-km mean storm motion if the object 

does not have a track history. 

The algorithm can also be run by providing a user-input object location and time. This allows 

for manual objects to be created using a mouse click over an area of interest to obtain a tornado 

probability for any storm with available radar data, which could be used for real-time or post-event 

investigation of storms that do not meet the default AzShear threshold criteria. 

3) Random Forest 

TORP uses a machine learning RF model, which allows for rapid tornado probability calculations 

(¡0.1 s) when working with real-time radar data. Other advantages of using an RF include the lack 

of a need to normalize variables, which could add processing time, as well as having solutions for 

handling missing data, something that can occur occasionally with real-time data. It is also trivial 

to retrain region-specifc RF models given ample data. 

An RF is a supervised learning method for classifcation, meaning that it requires labeled objects 

to learn from, which in this case will be labels of “tornadic” and “non-tornadic”. Each object 

will have a set of radar predictors associated with it, which are defned as the variables that are 

presented to the machine learning technique in order to learn how to classify the object. The same 

predictors that were used during training have to be accessible to the algorithm in real time to make 

an informed decision with the highest accuracy. TORP is still able to run with lower accuracy when 

some radar data are missing as long as at least 75% of the expected predictors are available. In 

the event of missing predictors, statistical imputation is utilized. This method replaces the missing 

values with the mean value of the predictors from the training set. 

The RF consists of a number of decision trees created in the model training process, and will 

use the predictors to determine its prediction for each tree. The model has assigned a threshold 

value for the predictor in each node in a tree (Fig. 3). The predictors extracted from the object 

to be evaluated by the RF will determine which branch the algorithm will follow. When the end 
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of a branch is reached, also known as a “leaf”, the RF will provide a fraction of training objects 

that were labeled as “tornadic” that reached this specifc leaf. Each tree is based on a diferent 

subsample of the training dataset using bootstrap aggregating, or bagging, which is the process of 

extracting random subsets of the training data to avoid overftting the model. The fnal tornado 

probability is computed by calculating the mean of the fractions from each decision tree, which is 

500 trees for TORP’s RF. 

AzShear - Maximum
> 0.0128626?

Velocity Gradient - 25th Percentile
> 0.00179975?

Velocity Gradient - 25th Percentile
> 0.0031085?

AzShear - Maximum
> 0.0031085?

PhiDP Gradient - Median
> 0.023992401?

40% of detections reaching here
were associated with a tornado

96.3% of detections reaching here
were associated with a tornado

No

No Yes

Yes

Fig. 3. Example of part of a decision tree in the TORP RF. 

All available 0.5°-tilt single-radar moments and the LLSD gradients for each product were used 

to defne predictors for the TORP RF model. The range from the radar to the object center in 

20-km bins was also included in the list of predictors, as the values of the single-radar variables 

associated with tornadic events will likely vary based on distance from the radar due to resolution 

changes with range (Wood et al. 2001; Wood and Brown 1997). 

In order to limit the number of predictors without afecting performance and to conduct a 

meaningful variable importance analysis, a correlation analysis was performed using the Pearson 

correlation coefcient (PCC), which was calculated by using Eq. 1, Í (� − �̄) (� − �̄)
��� = √Í Í (1)

(� − �̄) (� − �̄) 

where � and � represent the two variables to be evaluated for correlation, and �̄ and �̄ are the mean 

of each variable data in the training dataset (Bravais 1844). One predictor for each correlated 

predictor pair in the training dataset correlated with a PCC above 0.7 was removed. The correlated 

predictor that eliminated the largest number of calculations was chosen for removal. The fnal set 

of 62 predictors are listed in Table 2, which includes the predictor importance rank and score. An 
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exploratory analysis was performed to assess the performance impact of the predictors ranking 

from 40 to 62 to determine whether the predictor list should be reduced further. Removing these 

predictors showed a very slight decline in RF performance when training a new RF for every 

removed predictor. Since calculating the additional predictors is computationally inexpensive, all 

of the 62 predictors remain in the model. 
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Table 2. The 62 single-radar predictors used in TORP with importance ranking and the impurity-based 

predictor importance score. The score measures the importance based on a weighted measure of a predictor’s 

contributions to the thresholding within each decision tree in the RF (Pedregosa et al. 2011). 

Predictor Importance Rank Importance Score 
AzShear 25th Percentile 34 0.005637 
AzShear Maximum 1 0.293067 
AzShear Median 5 0.031931 
AzShear Minimum 8 0.023323 
DivShear 75th Percentile 28 0.007405 
DivShear Maximum 16 0.010551 
DivShear Median 26 0.008254 
DivShear Minimum 25 0.008544 
ΦDP AzGradient Median 39 0.004942 
ΦDP RadGradient 25th Percentile 12 0.015336 
ΦDP RadGradient 75th Percentile 3 0.044553 
ΦDP RadGradient Median 11 0.016041 
ΦDP RadGradient Minimum 42 0.004606 
ΦDP Gradient Maximum 30 0.006596 
ΦDP Gradient Median 13 0.014336 
ΦDP Gradient Minimum 50 0.003948 
ΦDP Median-Filtered Maximum 22 0.009087 
ΦDP Median-Filtered Minimum 27 0.008047 
Radar Range Interval 
ZH AzGradient Maximum 

17 
33 

0.010151 
0.005642 

ZH AzGradient Median 19 0.009879 
ZH AzGradient Minimum 37 0.005061 
ZH RanGradient Median 23 0.009045 
ZH RanGradient Minimum 18 0.010106 
ZH Gradient Maximum 10 0.016867 
ZH Gradient Minimum 41 0.004718 
ZH Median-Filtered Maximum 4 0.043441 
ZH Median-Filtered Minimum 7 0.026069 
�HV AzGradient 25th Percentile 56 0.003166 
�HV AzGradient 75th Percentile 61 0.002342 
�HV AzGradient Median 62 0.001719 
�HV RanGradient Median 57 0.003160 
�HV Gradient Maximum 15 0.010873 
�HV Gradient Minimum 59 0.002890 
�HV Median-Filtered Maximum 14 0.012677 
�HV Median-Filtered Median 31 0.005964 
�HV Median-Filtered Minimum 9 0.019017 
SW AzGradient 25th Percentile 47 0.004208 
SW AzGradient 75th Percentile 48 0.004169 
SW AzGradient Median 60 0.002754 
SW AzGradient Minimum 44 0.004427 
SW RanGradient 25th Percentile 40 0.004740 
SW RanGradient 75th Percentile 29 0.006888 
SW RanGradient Median 55 0.003266 
SW RanGradient Minimum 21 0.009126 
SW Gradient Minimum 51 0.003697 
SW Median-Filtered Maximum 35 0.005352 
SW Median-Filtered Minimum 20 0.009281 
VR Gradient 25th Percentile 2 0.136583 
VR Gradient Minimum 49 0.003996 
VR Median-Filtered Absolute Maximum 6 0.031014 
VR Median-Filtered Absolute Median 54 0.003290 
VR Median-Filtered Absolute Minimum 38 0.004978 
ZDR AzGradient Median 43 0.004538 
ZDR RanGradient 25th Percentile 52 0.003636 
ZDR RanGradient 75th Percentile 36 0.005239 
ZDR RanGradient Median 53 0.003406 
ZDR RanGradient Minimum 46 0.004408 
ZDR Gradient Minimum 58 0.003064 
ZDR Median-Filtered Maximum 24 0.008877 
ZDR Median-Filtered Median 32 0.005653 
ZDR Median-Filtered Minimum 45 0.004418 
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The RF training and testing process was performed using the Python machine learning library 

Scikit-learn and its Random Forest Classifer program (Pedregosa et al. 2011). The training and 

testing data were split by time period to avoid data contamination across the two datasets. The 

training data consisted of data from 2011-2016 and the testing data contained data from 2017-

2018. A list of optimal hyperparameters was found by tuning the model by iterating through 

hyperparameter value ranges using the “GridSearchCV” method from Scikit-learn, which uses 

5-fold cross validation to reduce the risk of overftting the model (Table 3). The model accuracy 

remained the same for both the training (seen) and testing (unseen) data, indicating that the model 

is unlikely to sufer from overftting. Once the training and testing of the RF was complete, it was 

converted into a CSV document that is read in by the algorithm once during its initialization, which 

takes approximately 0.5-0.6 s. 

Table 3. List of the hyperparameters used in the Scikit-learn RandomForestClassifer for the fnal RF model. 

Hyperparameter descriptions can be found in the Scikit-learn RandomForestClassifer documentation (Pedregosa 

et al. 2011). 

Hyperparameter Value 

bootstrap True 

class weight balanced subsample 

criterion entropy 

max depth 10 

max features None 

max leaf nodes None 

min impurity decrease 0 

min impurity split None 

min samples leaf 3 

min samples split 5 

min weight fraction leaf 0 

n estimators 500 

oob score False 

random state None 

warm start False 

To create the training and testing data for the RF, all severe and sub-severe storm reports (tornado, 

hail, and thunderstorm wind) where dual-polarization data were available from 2011 to 2018 in the 

Storm Events Database were retrieved from NCEI (NOAA National Weather Service 1950). The 

storm reports were used to determine which time periods and WSR-88D radars to download single-
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radar data for. This was achieved by linearly interpolating each storm report location at every 1-min 

interval, and acquiring volume data from the nearest radar within 5 min of each interpolated point 

location, yielding 86,124 0.5°-tilt radar scans. Because the training dataset domain is defned by 

storm report locations, it will resemble the climatological distribution of storms in the Continental 

United States (CONUS). Consequently, the central and eastern portions of the CONUS contain the 

largest concentration of training data point locations (Fig. 4). 

Fig. 4. Data point locations for the training dataset from 2011-2016. Each pink circle corresponds to a data 

point in or near CONUS. Not shown are 64 data points in Alaska, Hawaii, and Puerto Rico that were included in 

the training dataset, where the majority were non-tornadic. 

Two methods were used to create objects to label for the training dataset; one using storm report 

locations and one using high-rotation objects following the methods of TORP’s AzShear object 

creation. For the method using storm report locations, tornado reports were limited to those that 

are tagged as surveyed by the NWS to apply a level of quality control. Additionally, any storm 

reports that were used to defne non-tornadic objects that occurred within an hour of any tornado 

report were excluded. This was done in order to avoid labeling tornadic storms as non-tornadic by 

using non-tornadic reports in close proximity to a tornado or a pre-tornadic storm. 

Each interpolated report location was linked to the area of highest rotation, as defned by AzShear, 

from a 0.5°-tilt radar scan within 90 sec. The location of the AzShear maximum was also required 
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to be within a variable distance from the data point dependent on how far removed the interpolated 

point was from the start or end location of the report. This linking method was used because the 

linearly interpolated path can signifcantly deviate from the actual tornado path (Fig. 5). Similar 

to the methods used by Kingfeld and LaDue (2015), the default search radius of 10 km was 

increased by 25 m for each minute removed the interpolated location was from the report start or 

end location, which was determined after testing various radii on a limited selection of storms. 

This study used an increased minimum radius (10 km) compared with the 5-7.5-km radius used by 

Kingfeld and LaDue (2015) partially due to including reports from sources other than the NWS. 

Roughly 2,000 out of 26,000 tornado reports were linked with AzShear maxima more than 7.5 km 

away. The center of each report object was defned by the location of the AzShear maxima within 

this search radius, and any duplicate identifcations of the same AzShear maximum were removed. 

A preliminary RF model was trained using only these report objects, but was deemed to produce 

too many false alarms (non-tornadic objects with high tornado probabilities) in testing. The false 

alarms from 2011-2016 were introduced to the training dataset to train a new RF model to help the 

model identify these types of false alarms. These false alarm objects were defned by the AzShear 

object creation method that is described in the next paragraph, which is identical to how TORP 

creates automated objects. 

Linearly	Interpolated	Tornado	Report	Points
Damage	Assessment	Toolkit	Surveyed	Tornado	Paths

Fig. 5. Linearly interpolated storm reports (red triangles) compared to the surveyed tornado damage from the 

Damage Assessment Toolkit tornado paths for fve tornadoes in Texas from 27 April 2015. 

The second method of creating training objects involved performing an objective search for 

areas of high rotation over the entirety of every single-radar scan in the dataset. Objects of high 
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rotation were defned as having AzShear values at or above a threshold of 0.006 s−1. Over 98% of 

radar objects associated with NWS-surveyed quality-controlled tornado reports (excluding cases 

that were identifed as land/waterspouts) in the training dataset were captured by this threshold. 

The high-rotation objects were labeled as “tornadic” if they were located within 5 min and 20 

km of an interpolated tornado report point. While only tornado reports with the “NWS Storm 

Survey” source tag were used when defning objects following the storm-report identifcation 

method, tornado reports from all sources were used to label the high-rotation objects derived 

from the second object-defnition method. This increases confdence in the validity of the tornado 

reports used in the overall training dataset, because reports that are not associated with rotation are 

excluded. However, this will still likely exclude some legitimate, but probably weak, tornadoes in 

the training set. 

When only using the locations of non-tornadic storm reports, the preliminary RF assigned high 

probabilities to objects generated from noisy VR data. Consequently, a new and fnal RF was trained 

with the original quality-controlled storm report objects, as well as objects created by the second 

method, which included tornadic objects and false alarm non-tornadic high-rotation objects. The 

false alarms were defned by being assigned a tornado probability above 50% by the preliminary 

RF trained on the storm-report objects only. After processing, the training dataset from 2011-2016 

totaled 166,145 data points, where 17,336 points (10.4%) were tornadic events. 

The 2017-2018 testing dataset included objects defned by both the storm report and high-rotation 

methods (99,581 data points), as well as additional data that were included to establish a thorough 

and representative evaluation of the model. These data sources were included to better refect 

TORP’s real-time performance, and to address some limitations of the training data used to create 

and tune the RF model. Data from three additional data sources were added to the testing dataset 

to ensure correct labeling of object types that were never presented to the model during training. 

These sources included the high-rotation objects with preliminary RF probabilities below 50%, 

storm objects based on storm reports from sources other than the NWS, and manually identifed 

non-tornadic storm objects. 

The frst data source appended 137,593 high-rotation objects that were correctly labeled by the 

preliminary RF as non-tornadic. These objects were reintroduced to confrm that the fnal RF model 

also handled these objects appropriately. These non-tornadic objects were defned by having an 
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AzShear maximum meeting the 0.006-s−1 AzShear threshold, and by having no tornado reports 

within 20 km and 5 min of the object center. 

The second data source added the tornado report types that were previously excluded from the 

testing dataset, which comprises all tornado reports not associated with a high-rotation object 

with a report source other than “NWS Storm Survey”. While the tornadic high-rotation objects 

in the training data were potentially associated with tornado reports from other sources, all of 

the previously excluded tornado report types were added to the complete testing dataset. Any 

duplicates across the objects defned from the tornado reports and the high-rotation objects were 

removed, and in order to apply some quality control, any of the tornado report objects with an 

AzShear maximum below 0.0009 s−1 (below 1st percentile of all values associated with severe 

storm reports from 2011-2018) were removed. This yielded an additional 2,096 tornadic data 

points. 

The third and fnal additional data source included manually identifed non-tornadic data points 

in or near tornadic environments, which were defned by storms present in the same radar scan as a 

storm with an ongoing tornado. Any manually identifed object within 90 s and 15 km of a tornado 

was removed to avoid accidental extraction of tornadic data near a non-tornadic storm since the 

automated data extraction will center on any AzShear rotational maximum within the search radius. 

The number of manually identifed non-tornadic objects totaled 18,067 after applying this flter. 

A caveat with this data is that it may introduce pre-tornadic objects that are within minutes of 

producing a tornado, which could for example lead to counting a 60% tornado probability attached 

to a storm that produces a tornado in the next radar scan as a false alarm. To accurately assess 

TORP’s pre-tornadic performance, the generation of a dataset containing 0-60 min pre-tornadic 

manually identifed storm locations is currently in progress, which will be part of future work. 

The testing dataset totaled 257,097 data points from all of the described storm-report objects, 

high-rotation objects, and manual objects, and included 17,632 (6.9%) tornadic data points. 

4) Algorithm Outputs 

After the object tracking is complete, TORP will write out a text fle that includes object location 

and other metadata, predictor information, trends, and climatological levels for certain predictors. 

TORP objects can be displayed in the Advanced Weather Interactive Processing System (AWIPS-
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II), which is used by NWS forecasters operationally, or other visualization software. In AWIPS-II, 

a read-out with diferent information about the object, such as predictor values, becomes available 

when the user hovers their cursor over the object icon (top panel of Fig. 6). Other visualization 

features include probability fltering, predictor output customization, and trend graphs (Fig. 6). 

The climatological levels for select predictors are based on statistics from the storm reports included 

in TORP’s RF training and testing dataset, and labeled with a categorical tag. These tags indicate 

whether a predictor value is “low”, “medium”, “high”, or “extreme” to contextualize the predictors 

for users that may not be familiar with what the raw values signify. In the AWIPS-II readout, 

these are simply displayed as text next to predictor values, however they can also be used in a 

more visual way as in the Cooperative Institute for Severe and High-Impact Weather Research and 

Operations (CIWRO)/NSSL Severe Weather Research Map (SWRM), which uses them to shade 

predictor trend graphs according to the categorical level of the predictor (Fig. 6). 

b. Diferences Between TORP and other Tornado Algorithms 

The goal of TORP is to replace the TDA, and while the guiding principle of tornado detection 

for the algorithms is the same, TORP and TDA are two vastly diferent algorithms. The TDA 

is a binary tornado detection algorithm with objects based on gate-to-gate AzShear from VR. It 

uses diferent VR-derived products to determine whether these objects are tornadic. The TDA also 

requires more than one radar tilt scan to build 3D detections. This is not required by TORP, which 

reduces the time required to create an output product. TORP instead allows the user to browse 

through detections by tilt to confrm vertical continuity. This method may be more sensitive to 

noise, however, TORP does have other methods for reducing noise through ZH masking and by 

requiring at least a 30% tornado probability for an object within 30 km of a radar to be displayed. 

TORP is probabilistic and evaluates all potentially tornadic high-rotation objects, while all 

output TDA detections are considered a tornado. Although the TDA can use radar ZH to threshold 

objects, no information other than VR-derived products is used to determine whether a circulation is 

tornadic, whereas TORP uses all available radar information, including dual-polarization products 

that were not available when the TDA was created. TORP also increases the default algorithm 

range from 100 km to 160 km away from a radar. The tracking processes for TORP and the TDA are 

similar, however the main diference is the amount of data that is saved for each object/detection for 
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Fig. 6. TORP visualization examples. 

Top panel: AWIPS-II visualization for a storm system in South Carolina on 3 May 2021 at 1926 UTC. 

Bottom panel: SWRM visualization with an AzShear maximum trend graph for an 11 Dec 2021 tornadic 

supercell in Kentucky at 0432 UTC. 

each algorithm, with TORP storing data for all of the additional radar products it uses to calculate 

tornado probabilities. 

An overview of the key diferences between TORP and the TDA, HCA TDS, and ProbTor can be 

found in Table 4. While the diferences between TORP and the TDA are the main focus due to the 
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planned direct replacement, it is worth noting some of the similarities and contrasts between TORP 

and other tornado algorithms. TORP uses many of the same polarimetric products as the HCA 

TDS. The most important distinction is that the HCA TDS has fxed thresholds, while TORP’s RF 

will adjust the thresholds of the predictors associated with TDSs depending on other predictors, 

and will weight the products diferently. TORP and ProbTor are the most similar in function, since 

they are both machine learning-based algorithms that provide tornado probabilities. However, 

there are important distinctions that make them applicable in diferent situations, such as for linear 

storms where ProbTor often covers a greater area with a single probability since the objects are not 

based on rotation like TORP. TORP also takes advantage of polarimetric products, while ProbTor 

uses several environmental variables along with lightning and MRMS AzShear to derive predictive 

tornado probabilities. 
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c. Performance Evaluation Methods 

1) Skill Scores 

The performance of TORP was evaluated two-fold: 1) the individual performance of the algo-

rithm and 2) performance when compared against the operational TDA. Due to TORP’s automated 

objects being based on a 0.006-s−1 AzShear maximum threshold, any objects not meeting this 

threshold are assigned an automatic 0% tornado probability to refect the performance of the auto-

mated algorithm. TORP has the capability to evaluate user-defned objects below this threshold, 

but to accurately demonstrate TORP’s real-time performance, any tornado objects missed due to 

an absent rotation signature in the radar data will be counted as a false negative. 

The top section of Table 5 shows the 2 × 2 contingency table that was used to calculate per-

formance statistics when evaluating TORP deterministically at the 50% probability threshold in 

both an overall evaluation and for the dataset that is used when TORP is compared with the TDA 

performance. A true positive (tp; hit) is defned as when the algorithm predicts a tornado for 

an object associated with a tornado report. Similarly, a false positive (fp; false alarm) is when a 

tornado is predicted for an object, but not observed in the tornado report dataset. False negatives 

(fn; miss) are tornado report locations where the algorithm did not predict a tornado, and true 

negatives (tn; correct null) are objects that were correctly predicted to be non-tornadic. 

Table 5. Contingency tables for TORP and TDA for testing data from 2017 and 2018. Each table section 

shows the contingency table for diferent data evaluations, where diferent conditions are used to determine what 

counts as a “predicted tornado” versus a “predicted no tornado”. 

Tornado Report No Tornado Report 

Predicted Tornado True Positive (tp) False Positive (fp) 

Predicted No Tornado False Negative (fn) True Negative (tn) 

TORP ≥ 50% 9999 10156 

TORP ¡ 50% 7633 229309 

TORP 1-1 ≥ 50% 3811 780 

TORP 1-1 ¡ 50% 2417 11105 

TDA 731 1864 

No TDA 3683 6645 

TDA 1-1 731 30 

No TDA 1-1 3683 6645 

25 
Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0123.1.Unauthenticated | Downloaded 01/12/23 09:54 PM UTC 



 

It is worth noting that storm reports are susceptible to human error, which can lead to errors in 

location or time (Trapp et al. 2006). Additionally, the absence of a report does not necessarily 

mean that the weather event did not happen. Potvin et al. (2019) estimated that 45% of tornadoes 

were not reported in their study domain due to population density bias. As a result, some objects 

that are identifed as false positives are in reality true positives, and some true negatives are actually 

false negatives. In addition to these limitations, not all tornado reports have available radar data 

for portions of or over the entirety of the tornado path. Roughly 1% of the original tornado data 

points were missed due to data limitations. 

Nine diferent performance metrics are calculated for the 2017-2018 datasets: Probability of 

detection (POD), false alarm ratio (FAR), probability of false detection (POFD), critical success 

index (CSI), bias, accuracy, Gilbert skill score (GSS), Heidke skill score (HSS), and Peirce skill 

score (PSS). The equation for each metric is listed in Table 6. POD is the percentage of tornadoes 

that are detected. FAR is the fraction of false positives to the total number of objects that are 

predicted to be tornadic. POFD is the number of false alarms to the total number of non-tornadic 

objects. CSI is often referred to as the skill score and measures the fraction of true positives to 

the total number of predictions excluding the true negatives. The bias shows whether a forecast 

of tornadoes is over-predicted or under-predicted. A bias above 1 is indicative of over-prediction, 

while under 1 is under-prediction. The accuracy measures the fraction of correct predictions to the 

total number of both tornadic and non-tornadic objects. GSS is similar to CSI, but GSS accounts 

for hits due to chance, whereas CSI does not (Gilbert 1884; Schaefer 1990). HSS compares the 

skill of the algorithm with the skill of a random forecast, and PSS estimates how well the algorithm 

separates tornadic and non-tornadic objects (Peirce 1884; Heidke 1926). For all three of the named 

skill scores, 0 indicates no skill. 

2) Data Stratification 

In addition to the overall performance evaluation, TORP’s performance for diferent data cate-

gories is explored. The categories include storm type, tornado rating, and NWS Regions. 

To allow data stratifcation for analyzing TORP’s performance for diferent types of storm 

convective modes, a majority of the 2017-2018 radar scans that included tornadic data were 

manually analyzed to determine each individual storm’s convective mode. The primary convective 
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Table 6. Performance metric formulas and performance values for TORP using 0.5°-tilt radar data at 50% 

and the TDA. 

Perfect TORP TDA Performance Metric Formula Range TORP TDA Score 1-1 1-1 
tpProbability of Detection POD = 0 - 1 1 0.5647 0.6119 0.1656 0.1656tp + fn 
fpFalse Alarm Ratio FAR = 0 - 1 0 0.5040 0.1699 0.7183 0.0394tp + fp 

fpProbability of False Detection POFD = 0 - 1 0 0.0473 0.0656 0.2191 0.0045fp + tn 
tpCritical Success Index CSI = 0 - 1 1 0.3588 0.5438 0.1164 0.1645tp + fn + fp 

tp + fp Bias Bias = 0 - ∞ 1 1.1385 0.7372 0.5879 0.1724tp + fn 
tp + tn Accuracy Accuracy = 0 - 1 1 0.9232 0.8235 0.5708 0.6652tp + fn + fp + tn 

(tp·tn)−(fp·fn) 1Gilbert Skill Score GSS = � � � � - - 1 1 0.3214 0.4112 -0.0288 0.10343(fp+fn) · (tp+fp+fn+tn) + (tp·tn)−(fp·fn)� � 
2· (tp·tn)+(fp·fn)Heidke Skill Score HSS = -∞ - 1 1 0.4865 0.5827 -0.0593 0.1874(tp+fn) · (fn+tn)+(tp+fp) · (fp+tn)

(tp·tn)+(fp·fn)Peirce Skill Score PSS = -1 - 1 1 0.5174 0.5463 -0.0535 0.1611(tp+fn) · (fp+tn) 

mode was determined by visual inspection of the ZH representation of the storm structure. The 

storms were labeled as either discrete, linear, or tropical cyclone. This labeling was also completed 

for the non-tornadic objects in tornadic environments. 

The tornado rating was extracted for each storm object associated with a tornado report. The 

data is separated by EF rating, including EFU (unknown rating). To test the statistical signifcance 

of the separation of the probability distributions between signifcant severe tornadoes (EF2+) and 

the other tornadoes (EF0-1 and EFU), statistical tests were conducted. These included one- and 

two-sided permutation, one- and two-sided Kolmogorov-Smirnov, and unequal variances t-test, 

which were performed using SciPy (Virtanen et al. 2020) and mlxtend (Raschka 2018), 

The fnal categorical performance evaluation was performed for diferent NWS regions to in-

vestigate possible consequences of the training dataset climatology and what recommendations 

would apply to each region. One focus of this analysis was how the NWS Western Region difered 

from other regions due to the limited number of samples in this region, which includes all of the 

U.S. West Coast states, Idaho, Montana, Nevada, Arizona, most of Utah, and some counties in 

Wyoming. 
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4. Results 

1) TORP Overall Performance 

TORP’s performance varies based on the probability threshold the user picks to distinguish 

between tornadic and non-tornadic objects, as shown by the teal line in the performance diagram 

(Fig. 7; Roebber 2009). Choosing a threshold between 40 and 70% will yield a CSI above 0.3. 

When evaluating tornado probabilities at or above 50% as a predicted tornado, the TORP POD 

is about 56.5%, while the FAR is 50.4% (Table 6). It shows high accuracy and has a slight 

over-forecasting bias, with skill scores indicating fair skill from diferent measures. 

TORP’s tornado probabilities only show accurate reliability over about 55% (Fig. 8A), and be-

come more reliable with higher probabilities. For example, when TORP assigns a 95% probability, 

a tornado will occur close to 95% of the time that TORP assigns this probability. Fig. 8A also 

implies that any probability below 20% should be treated as non-tornadic most of the time, and 

therefore represents a satisfactory default threshold for when to hide/show TORP objects when 

displaying TORP using visualization software. Though TORP has an over-forecasting bias, Fig. 

8B reveals that TORP assigns tornado probabilities below 20% an overwhelming majority of the 

time. 

TORP is highly reliant on AzShear when assigning tornado probabilities, meaning the tornadoes 

with lower values for the AzShear maximum are much less likely to have a high tornado probability, 

which is refected in the predictor importance (Table 2), where the AzShear maximum (0.29) is 

more than twice the weight of the second-ranked predictor (0.14) and at least an order of magnitude 

greater than the rest of the predictors (0.04 and lower). 

Evaluating TORP with and without the manually created non-tornadic points in tornadic envi-

ronments (20,273 points) revealed an FAR diference of only 2-3% (higher FAR with), implying 

that the algorithm handles non-tornadic points well that are in relatively close proximity to a 

tornado. However, as mentioned in Section 3a(3), one caveat by introducing this data is that the 

non-tornadic points may include pre-tornadic storms that are within 1 hour of producing a tornado. 

When examining the fve worst false alarm detections within the manually identifed non-tornadic 

data, as defned by the highest tornado probabilities, two of the false alarms were within 3-10 min 

of producing a tornado, which arguably is a desirable feature of a tornado probability algorithm. 

While VR dealiasing was a potential issue with the other three high-probability false alarms, these 
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Fig. 7. Performance diagram for the TORP 2017-2018 test dataset based on 0.5°-tilt single-radar data. The 

lines depict TORP’s performance, as defned by the POD as a function of success ratio (1 – FAR), at 1% intervals 

with every 10% signifed by the markers. The teal line with diamond markers represents TORP’s overall 

performance, and the lavender line with circle markers represents TORP’s performance when compared 1-to-1 

with the TDA. The teal six-pointed star shows the TDA’s overall performance, and the lavender fve-pointed star 

shows the TDA’s performance for the 1-to-1 comparison with TORP. Performance diagram plotting code adapted 

from David John Gagne (https://github.com/djgagne). 

objects were associated with strong supercells at the time of the highest tornado probability and it 

is possible that an objective analysis of the radar data predictors is just unable to discern diferences 

between a tornadic and non-tornadic supercell with extreme AzShear rotation values that are above 

the 95th (84th) percentile when compared with climatological values based on all severe (tornado) 

storm reports from 2011-2018. 
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Fig. 8. Panel A is a reliability diagram for the TORP 2017-2018 test dataset. The teal line shows how TORP 

probabilities relate to the frequency of observed tornadoes in each 5% probability bin. The gray dashed line 

represents perfect reliability. The lavender dashed line depicts the overall fraction of tornadoes in the test dataset 

at 6.9%. The gray shaded areas represent poor reliability as defned by the Brier Skill Score (Brier 1950). The 

number of times TORP assigned probabilities in each bin is depicted in Panel B. 

To justify TORP’s 160-km default range limit, the performance at the 50% threshold was 

calculated at each 20-km bin (Fig. 9). The range limit can be turned of, but objects outside of the 

range limit show a drop in accuracy, and caution should be used beyond 140 km as evident by the 

spike in the FAR. TORP also has a slight reduction in POD with increasing range from the radar 

outside of 60 km, with a sharper decline after 160 km. This is likely due to the courser resolution 

due to changes in the radar beam width and the higher elevation at which the radar measurements 

are made. 

30 
Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0123.1.Unauthenticated | Downloaded 01/12/23 09:54 PM UTC 



 

20 40 60 80 100 120 140 160 180+
Range (km)

0.0

0.2

0.4

0.6

0.8

1.0

POD
FAR
POFD
CSI
Accuracy

Fig. 9. Select performance metrics at 50% tornado probability as a function of range. The last bin includes 

every object beyond 180 km. 

Overall, TORP shows consistently good performance in distinguishing between tornadic and 

non-tornadic objects for a very large multi-year dataset with 0.5°-tilt radar data. Fig. 10 shows the 

receiver operator characteristic (ROC) curve for the TORP test data, indicating skillful results with 

an area under the curve (AUC) of 0.89 (Mason 1982). The AUC indicates a perfect model at a value 

of 1, and one of no skill at 0.5 that is illustrated by the dashed line in Fig. 10. This favorable skill 

assessment is supported by the Gilbert, Heidke, and Peirce skill scores. TORP performs better than 

random chance and climatology by exceeding 0 for each score. Very limited testing on single-radar 

data with tilts between 0.3° and 1.9° shows skill in line with this performance evaluation that uses 

0.5°-tilt data. More work is needed to evaluate the robustness of this result. 

2) TORP Performance by Storm Type 

TORP performance did not vary much between storm convective modes, though there are some 

diferences worth noting. The raw numbers for the performance metrics related to non-tornadic 

objects do not refect reality as only manually labeled storms were included, leaving no noise 

objects in the dataset. The datasets included 19,484 data points for discrete storms, 15,205 for 
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Fig. 10. Receiver operator characteristic curve for TORP in teal, i.e., POD as a function of POFD. The curve 

for no skill is shown as a dashed line. 

linear storms, and 3,004 for tropical cyclones, with 49%, 43%, and 41% tornadic data, respectively. 

No restrictions or thresholds were applied to the tornadic data. At the 50%-probability threshold, 

POD and FAR were 57% and 10% for the discrete storms, 56% and 15% for linear storms, and 

50% and 13% for tropical cyclones. Quasi-linear convective system (QLCS) events can produce 

false alarms caused by enhanced AzShear due to the angle between the storm feature and the 

radar (Mahalik et al. 2019). Fig. 11 shows several areas with probabilities near 50% without 

tornado reports, though it is possible that weak tornadoes may have been under-reported due to 

the diurnal variability in reporting and reporting’s dependence on population density (Kelly et al. 

1978). However, the probability of the objects near tornado reports were generally relatively high 

when compared with the other areas within the linear system. 

While TORP performance is marginally better for discrete storms, further stratifcation of the 

discrete category into ordinary cells and supercells will likely increase the diference between the 

performance for supercells and other types of storms. However, it is encouraging to observe TORP 

detect non-warned QLCS tornadoes, as well as TC tornadoes, both of which pose forecasting 

challenges in tornado-warning operations. 

3) TORP Performance by Damage Rating 

An analysis of how tornado probabilities relate to the tornado damage rating was conducted 

(Fig. 12). Performing several statistical tests yielded confdence that the mean, median, and 
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Fig. 11. Accumulation of TORP objects with tornado probabilities ≥ 40% for 2019-10-21 0330-0600 UTC. 

An overnight linear system moved through OK and AR, producing several tornadoes. Start time stamps are 

provided for both tornado warnings and reports in UTC. 

distribution diferences between signifcant severe (EF2+) tornadoes and other tornadoes (EF0-1 

10−153and EFU) are signifcantly diferent with no �-value above 8 · . The one-sided permutation 

test and Kolmogorov-Smirnov test confrmed that the median and mean probability, as well as 

the probability distribution of the EF2+ population, are greater than those of the EF0-1 and EFU 

population with statistical signifcance. This indicates that TORP rarely misses more destructive 

tornadoes, and that most of the false negatives stems from tornadoes of lower or unknown ratings. 

It also implies that tornadoes capable of producing EF2+-rated damage are more likely to produce 

higher probabilities. This is likely due to the presence of TDS signatures measured by TORP’s 

predictors since higher-rated tornadoes produce these signatures more frequently (Van Den Broeke 

and Jauernic 2014). 
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Fig. 12. TORP probability distributions for tornadoes of diferent EF-ratings illustrated by violin plots showing 

the 25th, 50th, and 75th percentiles for each population. The number of samples per category is provided below 

each violin. 

While EF ratings are included in tornado reports in the Storm Events Database, the number 

only represents the maximum rating, while damage can vary greatly within a single tornado track 

(Burgess et al. 2014). The storm report data are not detailed enough to conclude whether the higher 

probabilities occur during the time period when the tornado actually produces the highest rated 

damage. 

4) TORP Performance by Region 

An analysis using NWS Regions was performed, which revealed that TORP’s performance for 

the NWS Western Region is much lower than the other combined regions. Caution should be used 

if using the algorithm for this region, as a large reduction in skill was shown at the 50%-probability 

threshold with a POD of only 17% and a high FAR at 85% which is likely due to the limited samples 

from Western Region in the training data (10,777 points where 186 were tornadic) and the high 

fraction of tornadoes in this region being weak and/or landspouts from ordinary cells (Blier and 

Batten 1994). The POD increased to 27% at the trade-of of a 3% increase in FAR when evaluating 

the algorithm using a 40% probability, hence a probability threshold reduction when using TORP 

for Western Region storms (and storms in other regions with similar characteristics) is advisable if 

using the default RF. While the tornado probabilities are less useful in the NWS Western Region, 

the algorithm can still be used to condense relevant radar information into a short read-out or to 
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extract trend information for vortices of interest (Fig. 6). Optimally, an NWS Western Region 

specifc RF would be trained and evaluated, however, the training data sample size will be limited 

by the climatological occurrence of tornadoes in this region, and additional training data collection 

is not planned at this time. 

a. TORP vs. TDA Performance 

To be able to compare TORP with the TDA, the “Tornadic Vortex Signature” Level III product 

was downloaded from the NCEI (NOAA National Weather Service Radar Operations Center 1991; 

Mitchell et al. 1998). The TDA is a binary algorithm, where a detection is always considered to 

be a tornado. Therefore, non-tornadic reports in this dataset that did not have a TDA detection 

associated with them are considered non-tornadic objects for the purpose of this evaluation. Due 

to the TDA’s binary nature, a threshold of 50% is used to indicate a predicted tornado by TORP in 

order to compare algorithm performance. 

Both the operational TDA and TORP were tested on a subset of the 2017-2018 severe storm 

report dataset, consisting of surveyed tornadoes only and no non-tornadic reports within 1 hour of 

tornadogenesis. Additionally, only reports within 100 km of a radar were considered to achieve a 

fair comparison due to the TDA’s range limitation. This evaluation is referred to as “TORP 1-1” 

and “TDA 1-1” in Tables 5 and 6 and Fig. 7. The algorithms are evaluated with the exact same 

dataset with a total of 11,089 data points, which is limited to when the TDA was available. For this 

dataset, TORP and the TDA are used to assign a tornado prediction to each severe storm report 

following the methods for tornado labeling of training dataset objects (objects are tornadic if within 

5 min and 20 km of an interpolated report location), meaning non-tornadic objects from either 

algorithm that are not associated with a severe storm report are not considered in this evaluation to 

achieve a 1-to-1 comparison. 

TORP performs very well within these constraints, and is skillful when distinguishing between 

tornadic and non-tornadic severe reports in separate convective environments (Table 6 and Fig. 7). 

The POD is slightly higher than TORP’s actual performance, but imposing these limitations on 

the non-tornadic points sharply reduces the false alarms for TORP. The TDA comparatively has a 

much lower POD and FAR, indicating a high under-forecasting bias comparable to using TORP 

with a probability threshold above 90%, resulting in very few detected tornadoes. 
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To refect a more accurate representation of the TDA’s performance, it was also evaluated with 

all false alarms included. The added false alarms are all of the TDA detections that were not 

associated with any storm report, tornado or otherwise. Shown as “TDA” in Table 6 and Fig. 7, 

this more realistic evaluation reveals a drastically increased FAR at over 71%. This evaluation is still 

excluding tornado reports not tagged as “NWS surveyed” from the missed tornadoes and tornadoes 

outside of a 100-km distance of a radar, so the actual POD is also likely lower. TORP ofers a large 

skill improvement over the TDA by raising the POD and lowering the FAR substantially. 

Overall, TORP addresses some of the limitations of the TDA discussed in Mitchell et al. (1998), 

such as increasing performance outside of 100 km, and achieves a much higher skill than the 

operational TDA by utilizing new technology. The use of VR-derived AzShear instead of gate-to-

gate shear resolves some data noise issues as well as the radar sampling issue with gate-to-gate shear 

at very short ranges. Mitchell et al. (1998) also brings up the need to adjust parameter thresholds 

depending on the environment and region, while the predictor thresholds in TORP are determined 

by the RF model. Regional and environmental diferences can be adjusted for by lowering or 

increasing probability expectations. However, the interpretation of TORP probabilities could 

beneft from quantifying the potential relationship between its performance and environmental 

conditions, which would require additional work. The algorithm mainly running with its default 

settings may explain the TDA’s poor performance on a large dataset compared with the performance 

for the case studies in Mitchell et al. (1998). 

5. Summary and Conclusions 

In summary, TORP: 

1. Reads in single-radar data for a specifed tilt, which by default is 0.5°, as well as the RF model 

confguration fle, and an optional RAP sounding table to calculate 0-6-km storm motion as a 

frst guess for the object tracking process. 

2. Creates objects based on a 0.006-s−1 AzShear threshold, flters them using fltered ZH, and 

merges objects close to one another. 

3. Extracts radar data predictors within 2.5 km of the center of each object, which is defned as 

the location of the object’s maximum AzShear. 
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4. Supplies the predictor information to the RF model to calculate a tornado probability. 

5. Tracks objects in time using a forecasted position based on the 0-6-km mean storm motion or 

the mean motion of up to the four most recent storm objects in an object’s track history. 

6. Outputs a text fle that can be used to display the tornado probability objects in a visualization 

tool. 

TORP is intended as a tool to summarize a multitude of radar data variables to encourage 

confdence in tornado warning decisions for operational forecasters. This could potentially lead to 

a lower forecaster workload or allow for a quick way to prioritize storms with the highest tornado 

probabilities. Overall, it performs well as shown by diferent performance metrics and, although 

not a 1-to-1 comparison, is comparable with 2016-2018 NWS tornado warning performance with a 

POD range of 50-62% and FAR of about 70% in the 2016-2018 period as analyzed by Brooks and 

Correia (2018, more recent years’ performance obtained by personal correspondence with Harold 

Brooks) and Bentley et al. (2021). Notably, TORP is evaluated for continued tornado detection at 

instantaneous points in time with no temporal context, meaning that it is possible that it detects 

more than 50% of tornadoes, but does not label them as tornadoes for the whole duration of the 

storm report time window. In fact, Fig. 11 shows two objects below 50% during the 0500-0508 

UTC tornado reports, and Fig. 13 shows the variability in the probability trend, which can change 

dramatically from one scan to the next. An algorithm-forecaster combination will likely produce 

a higher POD as the tornado warning duration will exceed the time scale of radar scan updates. 

Though the main model evaluation is performed at a 50% threshold, a forecaster could potentially 

adjust their analysis of TORP objects based on the probability at which the POD and FAR occur 

that they deem optimal, and can use probability trends to assess potential increasing threats. The 

evaluation can also be adjusted by calculating performance for specifc regions. While diference in 

storm modes overall did not afect the performance drastically at 50%, it is possible for forecasters 

to adjust their mental probability thresholds on a case-by-case basis. For example, if a tornado is 

reported with an object at 40%, a forecaster may pay closer attention to other storms in the same 

environment that produce similar probabilities. It is also possible to retrain an RF to a certain 

environment or region, as it is trivial to switch out the RF fle. The only limitation to this approach 

would be the availability of data, as machine learning can be limited by insufcient training data. 
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Fig. 13. Probability trend example with a tornadic QLCS in NE/IA at 2021-12-15 from ∼2130-2304 UTC. 

This object was associated with the 2250-2308 UTC Atlantic EF-2 tornado and 2234-2242 UTC 3 E Macedonia 

EF-1 tornado. 

A potential avenue for future work could be to extract environmental information to determine 

possible correlation with TORP’s tornado probabilities in order to provide quantifed guidance for 

when to adjust probability expectations. 

Currently, one of the biggest failure points of the algorithm is false alarms due to bad VR data. 

Because TORP is heavily relying on data derived from VR data, the algorithm predictions become 

less reliable when the VR data is inaccurate. This is often due to dealiasing failure or side-lobe 

contamination from severe hail, which can sometimes be challenging to discern by forecasters with 

less experience in radar data examination (Boettcher and Bentley 2022). VR spikes due to ground 

clutter and other non-meteorological features usually fall below 10-20% tornado probability when 

evaluated by the RF, but can occasionally produce a random tornado probability exceeding 50%, 

however, these objects can easily be disregarded by a forecaster. The largest concern with the 

obvious false alarms would be potential distrust in the algorithm, and sufcient training to make 

users aware of the algorithm’s weaknesses is essential to operational success. 

TORP has received favorable reviews by NWS forecasters in the Hazardous Weather Testbed 

Experimental Warning Program virtual 2021 experiment after several weeks of testing the algo-
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rithm in real-time and archived severe weather case studies (Sandmæl et al. 2022). Many forecaster 

suggestions for product improvement have already been incorporated in TORP, and inquiries for 

opinions on ongoing eforts for future features were well received. These features include incor-

porating pre-tornadic data and including probabilities of tornado impact by including population 

data to aid confdence in impact-based tornado warning damage tags, such as “considerable” and 

“catastrophic”. The incorporation of pre-tornadic data includes the generation of a 0-60-min man-

ually identifed pre-tornadic dataset that is nearing completion, and will allow an analysis of lead 

time performance of TORP and the potential for training a pre-tornadic RF to make a distinction 

between the pre-tornadic and currently tornadic stages of a storm. Another planned efort is to 

expand the evaluation of TORP for single-radar tilts other than the 0.5° tilt, and train more RF 

models to improve performance if needed. This can be especially important for radars relying on 

diferent tilts to adequately sample tornadic storms. 

The goal of TORP, similar to that of the original TDA (Mitchell et al. 1998), is to be a guidance tool 

for operational forecasters, and should contribute to enhanced performance using the combination 

of human knowledge and experience and the analytical advantages of machine learning. TORP 

will provide a tool for forecasters to assess and track potentially tornadic circulations, giving a 

quick overview of the current radar attributes of a circulation and how it has evolved with time. As 

forecasters see increasing probabilities and strengthening predictors, TORP can provide confdence 

in making swift tornado warning decisions. TORP can also provide guidance in situations where 

real-time ground reports are lacking, such as with overnight QLCS tornadoes, to reduce the number 

of non-warned tornadoes such as the two tornadoes south of Tulsa in Fig. 11. 
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nungsdienst. Geografska Annaler, 8 (4), 301–349, https://doi.org/10.1080/20014422.1926. 

11881138, URL https://doi.org/10.1080/20014422.1926.11881138. 

Ho, T. K., 1998: The random subspace method for constructing decision forests. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 20 (8), 832–844, https://doi.org/10.1109/34. 

709601. 

Homeyer, C. R., T. N. Sandmæl, C. K. Potvin, and A. M. Murphy, 2020: Distinguishing character-

istics of tornadic and nontornadic supercell storms from composite mean analyses of radar ob-

servations. Mon. Wea. Rev., 148 (12), 5015 – 5040, https://doi.org/10.1175/MWR-D-20-0136.1, 

URL https://journals.ametsoc.org/view/journals/mwre/148/12/mwr-d-20-0136.1.xml. 

43 
Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0123.1.Unauthenticated | Downloaded 01/12/23 09:54 PM UTC 

https://journals.ametsoc.org/view/journals/mwre/148/12/mwr-d-20-0136.1.xml
https://doi.org/10.1175/MWR-D-20-0136.1
https://doi.org/10.1109/34
https://doi.org/10.1080/20014422.1926.11881138
https://doi.org/10.1080/20014422.1926
https://doi.org/http://dx.doi.org/10.15191/nwajom.2016.0413
https://journals.ametsoc.org/view/journals/wefo/36/6/WAF-D-21-0056.1.xml
https://doi.org/10.1175/WAF-D-21-0056.1
https://journals.ametsoc.org/view/journals
https://doi.org/10.1175/JAMC-D-18-0187.1
https://journals.ametsoc.org/view/journals/apme/9/4/1520-0450


 

Istok, M. J., and Coauthors, 2009: WSR-88D dual polarization initial operational capabilities. 

25th Conf. on Int. Interactive Information and Processing Systems (IIPS) for Meteorology, 

Oceanography, and Hydrology, American Meteorological Society, Phoenix, AZ, Vol. 15.5, 

URL https://ams.confex.com/ams/pdfpapers/148927.pdf. 

Jing, Z., and G. Wiener, 1993: Two-dimensional dealiasing of Doppler velocities. J. Atmos. Oceanic 

Technol., 10 (6), 798 – 808, https://doi.org/10.1175/1520-0426(1993)010⟨0798:TDDODV⟩2. 

0.CO;2, URL https://journals.ametsoc.org/view/journals/atot/10/6/1520-0426 1993 010 0798 

tddodv 2 0 co 2.xml. 

Johnson, J. T., P. L. MacKeen, A. Witt, E. D. W. Mitchell, G. J. Stumpf, M. D. Eilts, 

and K. W. Thomas, 1998: The storm cell identifcation and tracking algorithm: An 

enhanced WSR-88D algorithm. Wea. Forecasting, 13 (2), 263 – 276, https://doi.org/10. 

1175/1520-0434(1998)013⟨0263:TSCIAT⟩2.0.CO;2, URL https://journals.ametsoc.org/view/ 

journals/wefo/13/2/1520-0434 1998 013 0263 tsciat 2 0 co 2.xml. 

Karstens, C. D., and Coauthors, 2015: Evaluation of a probabilistic forecasting methodology for 

severe convective weather in the 2014 Hazardous Weather Testbed. Wea. Forecasting, 30 (6), 

1551 – 1570, https://doi.org/10.1175/WAF-D-14-00163.1, URL https://journals.ametsoc.org/ 

view/journals/wefo/30/6/waf-d-14-00163 1.xml. 

Kelly, D. L., J. T. Schaefer, R. P. McNulty, C. A. Doswell, and R. F. Abbey, 1978: An 

augmented tornado climatology. Mon. Wea. Rev., 106 (8), 1172 – 1183, https://doi.org/ 

10.1175/1520-0493(1978)106⟨1172:AATC⟩2.0.CO;2, URL https://journals.ametsoc.org/view/ 

journals/mwre/106/8/1520-0493 1978 106 1172 aatc 2 0 co 2.xml. 

Kingfeld, D. M., and J. G. LaDue, 2015: The relationship between automated low-level velocity 

calculations from the WSR-88D and maximum tornado intensity determined from damage 

surveys. Wea. Forecasting, 30 (5), 1125–1139, https://doi.org/10.1175/WAF-D-14-00096.1, 

URL https://doi.org/10.1175/WAF-D-14-00096.1. 

Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. 

Appl. Meteor. Climatol., 47 (7), 1940 – 1961, https://doi.org/10.1175/2007JAMC1874.1, URL 

https://journals.ametsoc.org/view/journals/apme/47/7/2007jamc1874.1.xml. 

44 
Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0123.1.Unauthenticated | Downloaded 01/12/23 09:54 PM UTC 

https://journals.ametsoc.org/view/journals/apme/47/7/2007jamc1874.1.xml
https://doi.org/10.1175/2007JAMC1874.1
https://doi.org/10.1175/WAF-D-14-00096.1
https://doi.org/10.1175/WAF-D-14-00096.1
https://journals.ametsoc.org/view
https://doi.org
https://journals.ametsoc.org
https://doi.org/10.1175/WAF-D-14-00163.1
https://journals.ametsoc.org/view
https://doi.org/10
https://journals.ametsoc.org/view/journals/atot/10/6/1520-0426
https://doi.org/10.1175/1520-0426(1993)010�0798:TDDODV�2
https://ams.confex.com/ams/pdfpapers/148927.pdf


 

Lagerquist, R., A. McGovern, C. R. Homeyer, D. J. G. II, and T. Smith, 2020: Deep learning on 

three-dimensional multiscale data for next-hour tornado prediction. Mon. Wea. Rev., 148 (7), 

2837 – 2861, https://doi.org/10.1175/MWR-D-19-0372.1, URL https://journals.ametsoc.org/ 

view/journals/mwre/148/7/mwrD190372.xml. 

Lagerquist, R., A. McGovern, and T. Smith, 2017: Machine learning for real-time predic-

tion of damaging straight-line convective wind. Wea. Forecasting, 32 (6), 2175 – 2193, 

https://doi.org/10.1175/WAF-D-17-0038.1, URL https://journals.ametsoc.org/view/journals/ 

wefo/32/6/waf-d-17-0038 1.xml. 

Lemon, L. R., R. J. Donaldson, D. W. Burgess, and R. A. Brown, 1977: Doppler radar 

application to severe thunderstorm study and potential real-time warning. Bull. Amer. Me-

teor. Soc., 58 (11), 1187 – 1193, https://doi.org/10.1175/1520-0477(1977)058⟨1187:DRATST⟩ 
2.0.CO;2, URL https://journals.ametsoc.org/view/journals/bams/58/11/1520-0477 1977 058 

1187 dratst 2 0 co 2.xml. 

Loefer, S. D., M. R. Kumjian, M. Jurewicz, and M. M. French, 2020: Diferentiating between 

tornadic and nontornadic supercells using polarimetric radar signatures of hydrometeor size 

sorting. Geophys. Res. Lett., 47 (12), e2020GL088 242, https://doi.org/https://doi.org/10.1029/ 

2020GL088242. 

Losey-Bailor, A., W. D. Zittel, and Z. Jing, 2019: Improving Doppler velocity coverage on 

the WSR-88D by using low PRFs with 2DVDA. Tech. rep., NWS Radar Operations Cen-

ter, 16 pp. URL https://roc.noaa.gov/wsr88d/PublicDocs/Publications/Losey-BailorEtAl2019 

ImprovingDoppVelCoverageLowPRFs 39thICRM.pdf. 

Lyza, A. W., M. D. Flournoy, and E. N. Rasmussen, 2022: Observed characteristics of the 

tornadic supercells of 27-28 April 2011 in the Southeast United States. Mon. Wea. Rev., 

https://doi.org/10.1175/MWR-D-21-0274.1, URL https://journals.ametsoc.org/view/journals/ 

mwre/aop/MWR-D-21-0274.1/MWR-D-21-0274.1.xml. 

Mahalik, M. C., B. R. Smith, K. L. Elmore, D. M. Kingfeld, K. L. Ortega, and T. M. 

Smith, 2019: Estimates of gradients in radar moments using a linear least squares deriva-

tive technique. Wea. Forecasting, 34 (2), 415–434, https://doi.org/10.1175/WAF-D-18-0095.1, 

45 
Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0123.1.Unauthenticated | Downloaded 01/12/23 09:54 PM UTC 

https://doi.org/10.1175/WAF-D-18-0095.1
https://journals.ametsoc.org/view/journals
https://doi.org/10.1175/MWR-D-21-0274.1
https://roc.noaa.gov/wsr88d/PublicDocs/Publications/Losey-BailorEtAl2019
https://doi.org/https://doi.org/10.1029
https://journals.ametsoc.org/view/journals/bams/58/11/1520-0477
https://doi.org/10.1175/1520-0477(1977)058�1187:DRATST�
https://journals.ametsoc.org/view/journals
https://doi.org/10.1175/WAF-D-17-0038.1
https://journals.ametsoc.org
https://doi.org/10.1175/MWR-D-19-0372.1


 

URL https://doi.org/10.1175/WAF-D-18-0095.1, https://journals.ametsoc.org/waf/article-pdf/ 

34/2/415/4866756/waf-d-18-0095\ 1.pdf. 

Markowski, P. M., 2002: Hook echoes and rear-fank downdrafts: A review. Mon. Wea. 

Rev., 130 (4), 852 – 876, https://doi.org/10.1175/1520-0493(2002)130⟨0852:HEARFD⟩ 
2.0.CO;2, URL https://journals.ametsoc.org/view/journals/mwre/130/4/1520-0493 2002 130 

0852 hearfd 2.0.co 2.xml. 

Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30 (4), 291–303. 

McGovern, A., K. L. Elmore, D. J. Gagne, S. E. Haupt, C. D. Karstens, R. Lagerquist, 

T. Smith, and J. K. Williams, 2017: Using artifcial intelligence to improve real-time 

decision-making for high-impact weather. Bull. Amer. Meteor. Soc., 98 (10), 2073 – 2090, 

https://doi.org/10.1175/BAMS-D-16-0123.1, URL https://journals.ametsoc.org/view/journals/ 

bams/98/10/bams-d-16-0123.1.xml. 

Mecikalski, J. R., T. N. Sandmæl, E. M. Murillo, C. R. Homeyer, K. M. Bedka, J. M. Apke, and C. P. 

Jewett, 2021: A random-forest model to assess predictor importance and nowcast severe storms 

using high-resolution radar–goes satellite–lightning observations. Mon. Wea. Rev., 149 (6), 

1725 – 1746, https://doi.org/10.1175/MWR-D-19-0274.1, URL https://journals.ametsoc.org/ 

view/journals/mwre/149/6/MWR-D-19-0274.1.xml. 

Mitchell, E. D. W., S. V. Vasilof, G. J. Stumpf, A. Witt, M. D. Eilts, J. T. Johnson, and K. W. 

Thomas, 1998: The National Severe Storms Laboratory tornado detection algorithm. Wea. Fore-

casting, 13 (2), 352 – 366, https://doi.org/10.1175/1520-0434(1998)013⟨0352:TNSSLT⟩2.0. 

CO;2, URL https://journals.ametsoc.org/view/journals/wefo/13/2/1520-0434 1998 013 0352 

tnsslt 2 0 co 2.xml. 

NEXRAD Joint System Program Ofce, 1985: Next Generation Weather Radar (NEXRAD) 

algorithm report. Tech. rep., Silver Spring, MD, 738 pp. URL https://ia800309.us.archive.org/ 

33/items/nextgenerationwe00nexr/nextgenerationwe00nexr.pdf. 

NOAA National Weather Service, 1950: Storm Events Database. NOAA National Centers for 

Environmental Information, URL https://www.ncdc.noaa.gov/stormevents, accessed April 2019 

- April 2020. 

46 
Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0123.1.Unauthenticated | Downloaded 01/12/23 09:54 PM UTC 

https://www.ncdc.noaa.gov/stormevents
https://ia800309.us.archive.org
https://journals.ametsoc.org/view/journals/wefo/13/2/1520-0434
https://doi.org/10.1175/1520-0434(1998)013�0352:TNSSLT�2.0
https://journals.ametsoc.org
https://doi.org/10.1175/MWR-D-19-0274.1
https://journals.ametsoc.org/view/journals
https://doi.org/10.1175/BAMS-D-16-0123.1
https://journals.ametsoc.org/view/journals/mwre/130/4/1520-0493
https://doi.org/10.1175/1520-0493(2002)130�0852:HEARFD�
https://journals.ametsoc.org/waf/article-pdf
https://doi.org/10.1175/WAF-D-18-0095.1


 

NOAA National Weather Service Radar Operations Center, 1991: NOAA Next Generation Radar 

(NEXRAD) Level 2 base data. NOAA National Centers for Environmental Information, accessed 

April 2019 - April 2020, https://doi.org/10.7289/V5W9574V. 

NWS Radar Operations Center Applications Branch, 2021: Interface control document for the 

RDA/RPG. NWS Doc. 2620003AA, RDA build 20.0. Tech. rep., 193 pp. URL https://www.roc. 

noaa.gov/WSR88D/PublicDocs/ICDs/2620003AA.pdf. 

Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classifcation 

algorithm for the polarimetric wsr-88d: Description and application to an mcs. Wea. Forecasting, 

24 (3), 730 – 748, https://doi.org/10.1175/2008WAF2222205.1, URL https://journals.ametsoc. 

org/view/journals/wefo/24/3/2008waf2222205 1.xml. 

Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. Journal of Machine 

Learning Research, 12 (85), 2825–2830, URL http://jmlr.org/papers/v12/pedregosa11a.html. 

Peirce, C. S., 1884: The numerical measure of the success of predictions. Science, NS-4 (93), 

453–454. 

Potvin, C. K., C. Broyles, P. S. Skinner, H. E. Brooks, and E. Rasmussen, 2019: A Bayesian 

hierarchical modeling framework for correcting reporting bias in the U.S. tornado database. 

Wea. Forecasting, 34 (1), 15 – 30, https://doi.org/10.1175/WAF-D-18-0137.1, URL https:// 

journals.ametsoc.org/view/journals/wefo/34/1/waf-d-18-0137 1.xml. 

Raschka, S., 2018: Mlxtend: Providing machine learning and data science utilities and extensions to 

Python’s scientifc computing stack. The Journal of Open Source Software, 3 (24), https://doi.org/ 

10.21105/joss.00638, URL http://joss.theoj.org/papers/10.21105/joss.00638. 

Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 

24 (2), 601 – 608, https://doi.org/10.1175/2008WAF2222159.1, URL https://journals.ametsoc. 

org/view/journals/wefo/24/2/2008waf2222159 1.xml. 

Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnic, 2005: Polarimetric tornado 

detection. J. Appl. Meteor., 44 (5), 557 – 570, https://doi.org/10.1175/JAM2235.1, URL https: 

//journals.ametsoc.org/view/journals/apme/44/5/jam2235.1.xml. 

47 
Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0123.1.Unauthenticated | Downloaded 01/12/23 09:54 PM UTC 

https://journals.ametsoc.org/view/journals/apme/44/5/jam2235.1.xml
https://doi.org/10.1175/JAM2235.1
https://journals.ametsoc
https://doi.org/10.1175/2008WAF2222159.1
http://joss.theoj.org/papers/10.21105/joss.00638
https://doi.org
https://journals.ametsoc.org/view/journals/wefo/34/1/waf-d-18-0137
https://doi.org/10.1175/WAF-D-18-0137.1
http://jmlr.org/papers/v12/pedregosa11a.html
https://journals.ametsoc
https://doi.org/10.1175/2008WAF2222205.1
https://noaa.gov/WSR88D/PublicDocs/ICDs/2620003AA.pdf
https://www.roc
https://doi.org/10.7289/V5W9574V


 

Sandmæl, T. N., C. R. Homeyer, K. M. Bedka, J. M. Apke, J. R. Mecikalski, and K. Khlopenkov, 

2019: Evaluating the ability of remote sensing observations to identify signifcantly se-

vere and potentially tornadic storms. J. Appl. Meteor. Climatol., 58 (12), 2569 – 2590, 

https://doi.org/10.1175/JAMC-D-18-0241.1, URL https://journals.ametsoc.org/view/journals/ 

apme/58/12/jamc-d-18-0241.1.xml. 

Sandmæl, T. N., and A. E. Reinhart, 2022: Using linear least square shear product signatures 

from single radars to evaluate tornado potential for quasi-linear convective system circulations. 

Symposium on Radar Science in the Service of Earth System Predictability, American Meteoro-

logical Society, Virtual, 14.3, URL https://ams.confex.com/ams/102ANNUAL/meetingapp.cgi/ 

Paper/393253. 

Sandmæl, T. N., B. R. Smith, J. W. Monroe, J. G. Madden, P. T. Hyland, and B. A. Schenkel, 2022: 

The 2021 Hazardous Weather Testbed Experimental Warning Program Radar Convective Ap-

plications Experiment: Evaluating the Tornado Potential Algorithm and the AzShear Rotation 

Detection Algorithm. 31st Conference on Weather Analysis and Forecasting (WAF)/27th Con-

ference on Numerical Weather Prediction (NWP), American Meteorological Society, Virtual, 

J15B.4, URL https://ams.confex.com/ams/102ANNUAL/meetingapp.cgi/Paper/393261. 

Saxion, D. S., and R. L. Ice, 2012: New science for the WSR-88D: Status of the dual-polarization 

upgrade. 28th Conf. on Interactive Information Processing Systems, American Meteorological 

Society, New Orleans, LA, 5, URL https://roc.noaa.gov/wsr88d/PublicDocs/Publications/DP 

Status 28th IIPS Jan2012.pdf. 

Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecast-

ing, 5 (4), 570 – 575, https://doi.org/10.1175/1520-0434(1990)005⟨0570:TCSIAA⟩2.0.CO;2, 

URL https://journals.ametsoc.org/view/journals/wefo/5/4/1520-0434 1990 005 0570 tcsiaa 2 

0 co 2.xml. 

Segall, J. H., M. M. French, D. M. Kingfeld, S. D. Loefer, and M. R. Kumjian, 2022: Storm-scale 

polarimetric radar signatures associated with tornado dissipation in supercells. Wea. Forecasting, 

37 (1), 3 – 21, https://doi.org/10.1175/WAF-D-21-0067.1, URL https://journals.ametsoc.org/ 

view/journals/wefo/37/1/WAF-D-21-0067.1.xml. 

48 
Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0123.1.Unauthenticated | Downloaded 01/12/23 09:54 PM UTC 

https://journals.ametsoc.org
https://doi.org/10.1175/WAF-D-21-0067.1
https://journals.ametsoc.org/view/journals/wefo/5/4/1520-0434
https://doi.org/10.1175/1520-0434(1990)005�0570:TCSIAA�2.0.CO;2
https://roc.noaa.gov/wsr88d/PublicDocs/Publications/DP
https://ams.confex.com/ams/102ANNUAL/meetingapp.cgi/Paper/393261
https://ams.confex.com/ams/102ANNUAL/meetingapp.cgi
https://journals.ametsoc.org/view/journals
https://doi.org/10.1175/JAMC-D-18-0241.1


 

Simmons, K. M., and D. Sutter, 2005: WSR-88D radar, tornado warnings, and tornado casualties. 

Wea. Forecasting, 20 (3), 301 – 310, https://doi.org/10.1175/WAF857.1, URL https://journals. 

ametsoc.org/view/journals/wefo/20/3/waf857 1.xml. 

Smith, R. L., and D. W. Holmes, 1961: Use of Doppler radar in meteorological observa-

tions. Mon. Wea. Rev., 89 (1), 1 – 7, https://doi.org/10.1175/1520-0493(1961)089⟨0001: 

UODRIM⟩2.0.CO;2, URL https://journals.ametsoc.org/view/journals/mwre/89/1/1520-0493 

1961 089 0001 uodrim 2 0 co 2.xml. 

Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and 

aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97 (9), 1617 – 

1630, https://doi.org/10.1175/BAMS-D-14-00173.1, URL https://journals.ametsoc.org/view/ 

journals/bams/97/9/bams-d-14-00173.1.xml. 

Snyder, J. C., and A. V. Ryzhkov, 2015: Automated detection of polarimetric tornadic debris 

signatures using a hydrometeor classifcation algorithm. J. Appl. Meteor. Climatol., 54 (9), 1861 

– 1870, https://doi.org/10.1175/JAMC-D-15-0138.1, URL https://journals.ametsoc.org/view/ 

journals/apme/54/9/jamc-d-15-0138.1.xml. 

Stout, G. E., and F. A. Huf, 1953: Radar records Illinois tornadogenesis. Bull. Amer. Meteor. Soc., 

34 (6), 281–284. 

Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. 

Thomas, and D. W. Burgess, 1998: The National Severe Storms Laboratory mesocyclone 

detection algorithm for the WSR-88D. Wea. Forecasting, 13 (2), 304 – 326, https://doi.org/10. 

1175/1520-0434(1998)013⟨0304:TNSSLM⟩2.0.CO;2, URL https://journals.ametsoc.org/view/ 

journals/wefo/13/2/1520-0434 1998 013 0304 tnsslm 2 0 co 2.xml. 

Tarjan, R., 1972: Depth-frst search and linear graph algorithms. SIAM journal on computing, 

1 (2), 146–160. 

Torres, S. M., and C. D. Curtis, 2007: Initial implementation of super-resolution data on the 

NEXRAD network. 21st International Conference on Interactive Information Processing Sys-

tems for Meteorology, Oceanography, and Hydrology, American Meteorological Society, San 

Antonio, TX, Vol. 5B.10, URL https://ams.confex.com/ams/pdfpapers/116240.pdf. 

49 
Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0123.1.Unauthenticated | Downloaded 01/12/23 09:54 PM UTC 

https://ams.confex.com/ams/pdfpapers/116240.pdf
https://journals.ametsoc.org/view
https://doi.org/10
https://journals.ametsoc.org/view
https://doi.org/10.1175/JAMC-D-15-0138.1
https://journals.ametsoc.org/view
https://doi.org/10.1175/BAMS-D-14-00173.1
https://journals.ametsoc.org/view/journals/mwre/89/1/1520-0493
https://doi.org/10.1175/1520-0493(1961)089�0001
https://ametsoc.org/view/journals/wefo/20/3/waf857
https://journals
https://doi.org/10.1175/WAF857.1


 

Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: 

Some words of caution on the use of severe wind reports in postevent assessment and research. 

Wea. Forecasting, 21 (3), 408–415. 

Van Den Broeke, M. S., 2017: Potential tornado warning improvement resulting from utilization 

of the TDS in the warning decision process. Journal of Operational Meteorology, 5 (10). 

Van Den Broeke, M. S., 2020: A preliminary polarimetric radar comparison of pre-

tornadic and nontornadic supercell storms. Mon. Wea. Rev., 148 (4), 1567 – 1584, 

https://doi.org/10.1175/MWR-D-19-0296.1, URL https://journals.ametsoc.org/view/journals/ 

mwre/148/4/mwr-d-19-0296.1.xml. 

Van Den Broeke, M. S., and S. T. Jauernic, 2014: Spatial and temporal characteristics of 

polarimetric tornadic debris signatures. J. Appl. Meteor. Climatol., 53 (10), 2217 – 2231, 

https://doi.org/10.1175/JAMC-D-14-0094.1, URL https://journals.ametsoc.org/view/journals/ 

apme/53/10/jamc-d-14-0094.1.xml. 

Virtanen, P., and Coauthors, 2020: SciPy 1.0: Fundamental algorithms for scientifc computing in 

Python. Nature Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2. 

Warning Decision Training Division, 2022a: Radar & Applications Course - Convective storm 

structure and evolution - Analyzing tornadic scale signatures. URL https://training.weather.gov/ 

wdtd/courses/rac/severe/tornadic-signatures/presentation html5.html, accessed 10 Oct 2022. 

Warning Decision Training Division, 2022b: Radar & Applications Course - Warning fundamen-

tals - Warning content: Impact-based warnings. URL https://training.weather.gov/wdtd/courses/ 

rac/warnings/warn-content/presentation html5.html, accessed 10 Oct 2022. 

Whiton, R. C., P. L. Smith, S. G. Bigler, K. E. Wilk, and A. C. Harbuck, 1998a: History 

of operational use of weather radar by U.S. Weather Services. part I: The pre-NEXRAD 

era. Wea. Forecasting, 13 (2), 219 – 243, https://doi.org/10.1175/1520-0434(1998)013⟨0219: 

HOOUOW⟩2.0.CO;2, URL https://journals.ametsoc.org/view/journals/wefo/13/2/1520-0434 

1998 013 0219 hoouow 2 0 co 2.xml. 

Whiton, R. C., P. L. Smith, S. G. Bigler, K. E. Wilk, and A. C. Harbuck, 1998b: His-

tory of operational use of weather radar by U.S. Weather Services. part II: Development 

50 
Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0123.1.Unauthenticated | Downloaded 01/12/23 09:54 PM UTC 

https://journals.ametsoc.org/view/journals/wefo/13/2/1520-0434
https://doi.org/10.1175/1520-0434(1998)013�0219
https://training.weather.gov/wdtd/courses
https://training.weather.gov
https://doi.org/10.1038/s41592-019-0686-2
https://journals.ametsoc.org/view/journals
https://doi.org/10.1175/JAMC-D-14-0094.1
https://journals.ametsoc.org/view/journals
https://doi.org/10.1175/MWR-D-19-0296.1


 

of operational Doppler weather radars. Wea. Forecasting, 13 (2), 244 – 252, https://doi.org/ 

10.1175/1520-0434(1998)013⟨0244:HOOUOW⟩2.0.CO;2, URL https://journals.ametsoc.org/ 

view/journals/wefo/13/2/1520-0434 1998 013 0244 hoouow 2 0 co 2.xml. 

Wood, V. T., and R. A. Brown, 1997: Efects of radar sampling on single-Doppler ve-

locity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12 (4), 928 – 938, 

https://doi.org/10.1175/1520-0434(1997)012⟨0928:EORSOS⟩2.0.CO;2, URL https://journals. 

ametsoc.org/view/journals/wefo/12/4/1520-0434 1997 012 0928 eorsos 2 0 co 2.xml. 

Wood, V. T., R. A. Brown, and D. Sirmans, 2001: Technique for improving detection of WSR-88D 

mesocyclone signatures by increasing angular sampling. Wea. Forecasting, 16 (1), 177 – 184, 

https://doi.org/10.1175/1520-0434(2001)016⟨0177:TFIDOW⟩2.0.CO;2, URL https://journals. 

ametsoc.org/view/journals/wefo/16/1/1520-0434 2001 016 0177 tfdow 2 0 co 2.xml. 

Zittel, W. D., 2019: Theory and concept of operations for multi-PRF dealiasing algorithm’s 

VCP 112. Tech. rep., NWS Radar Operations Center Applications Branch, 13 pp. URL https: 

//www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/Theory ConOps VCP112.pdf. 

51 
Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0123.1.Unauthenticated | Downloaded 01/12/23 09:54 PM UTC 

www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/Theory
https://ametsoc.org/view/journals/wefo/16/1/1520-0434
https://journals
https://doi.org/10.1175/1520-0434(2001)016�0177:TFIDOW�2.0.CO;2
https://ametsoc.org/view/journals/wefo/12/4/1520-0434
https://journals
https://doi.org/10.1175/1520-0434(1997)012�0928:EORSOS�2.0.CO;2
https://journals.ametsoc.org
https://doi.org



